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ABSTRACT

This document provides the final report for Contract Humber
N00167-82-C-0023, "Applications of an Improved Wave Drag Prediction Metnod."
The method is based on a modified supersonic linear theory computer technique
developed in this contract and two earlier contracts, NOO167-78-C-0005 and
NO0167-79-C-0123, all of which were jointly funded by DTNSRDC and #¥ASA/Langley
Research Center. The modified linear theory differs from ordinary linear
theory in that it uses the exact boquiry condition, it uses the local
perturbed velocity to calculate g =/h2-1, it uses the exact pressure
coeffficient equation, and it uses characteristic tracing to determine regions
of influence. The theoretical and numerical techniques are described in
detail. A computer user's wmanual is included which provides a detailed
description of the inputs and outputs of the computer routine, including
recoiimended yuidelines for preparing the geometric input. Comparisons between
predictions of drag or pressures using the modified Jinear theory are made for
five cases with wind tunnel data or other theories. These comparisons verify
the improved accuracy of the modified linear theory relative to ordinary
linear theory, particularly for nhigh ach numbers and nigh surface siopes.
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IMPROVED WAVE DRAG PREDICTIONS USING MODIFIED LINEAR THEORY
1.0  INTRODUCTION

Supersonic linearized theory, including the special cases of slender body
theory and area rule, have well known limitations. While Tinear theory does
remarkably well in predicting 1ift and pitching morent, it does not do as well
in predicting drag. The largest discrepancies occur when the sweep angle is
nearly equal to the Mach angle (cos=11/11). Inaccurate prediction results
because drag is the integral of pressure times local slope, and the largest
errors in predicted pressure are likely to occur where the slopes are
largest. Van Dyke's second-order method gives much improved accuracy relative
to slender-body or Tinear theory results for two-dimensional flow, either
planar or axisymmetric, but a method for extending it to three dimensions has
not been found. For aircraft configurations, analytical methods for
predicting drag more accurately than area rule have not been found, short of
the very complex "exact" solutions such as method of characteristics,
time-dependent equations of motion, or relaxation techniques. These exact
methods require large amounts of computer time and are often sensitive to
input data smoothness, choice of arbitrary parameters, etc. These techniques
are not ideal for preliminary design, where rany answers are required
quickly. Prelinminary design requires a method which approximates linear
theory in complexity and approaches the exact solutions in accuracy. The
rmodified Tinear theory technique has been developed to provide an efficient,
accurate method.

The analytical and numerical techniques used in the modified linear theory
analysis routine are described. Calculations for several cases are compared
with wind tunnel data or other theoretical methods. A cormputer user's manual
is included as Appendix B,

2.0 LINEAR THEGRY PERTURBATION RELATIOMNS

Because line distributions of sources and sinks are inadequate for a
general three-dimensional solution, all calculations described in this paper
utilize surface distributions of sources and sinks. The velocity potential
equation is
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where S is the souce strength, ds = J/ifi" A on the surface of the

body, and the integral is taken over that portion of the surface included in
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where ¢ is the local slope, v, is tne perturbation component perpendicular
to the freestream and normal to vy and v, is the perturbation component
perpendicular to the freestream aRa para]?el to the local surface. The

functions F, G, and H are dependent on the value of g , the limits of

integration, the geometry of the model, and the functions used to describe the

variations of source strength in the y, z directions.
3.0 MODIFICATIONS TU LINEAR THEGRY

The accuracy of the current method results from the combined effects of
the exact boundary condition, and use of the local (perturbed) value of
8= /5 < . The exact pressure coefficient equation is also used.

The exact boundary condition (Fig. 1) requires not only the use of the
perturbed streamwise velocity component but also the determination of tine
surface slope {(e) in the plane defined by the freestream velocity vector and
the normal to local surface. This three-dimensional determination of the
slope and the velocity component boundary conditions is necessary even in
quasiplanar cases, sucnh as for wings.

The primary effect of the local g8 (Fig. 2) is on tne constant of
proportionality, L/s8. The 1/g factor appears in every term but one on the
rignt side of Eys. (2-4). Thus, it has a direct effect on each of the
perturbation velocities. As the local sach nuwber approaches l.u, the value
of 1/8 approaches infinity. This is obviously an undesirable result.
Therefore, a correlated local Mach or g has been developed based on
calculations for two-dimensional ramps and cones. The correlation puts a
limit on the maxiaum value of 1/8 and causes the correlated value to approach
the 1imit more slowly than with the exact equation. The effect of local 3 on
the region of influence {characteristic directions) is less pronounced,
particularly for two-dimensional cases, either planar or axisymmetric.
However, for three-diimensional flow the variations in propagation direction
can be important because of the lateral or longitudinal displacewment of
interference effects. Region of influence effects will be discussed further
pelow.

The two modifications have opposite effects. For conmpressions, the exact
tangency condition tends to reduce the magnitude of the perturbations because
(1 + @./¥, ) is less tnan unity, and the required normal velocity v, is
less than with the linearized boundary condition. But the local 8 in Egs.
(2-4) tends to increase the perturbdt1ons values because, when M is smaller
than the freestream value, 1/8 is larger. Conversely, for expansions, (1*+ &

Ng) > 1, and the required vy is larger tnan the linearized values, but
1/8 is smaller than the freestream value.

Theoretical pressures predicted by the modified method are cowpared with
exact theory and linearized theory for 45-deg swept ramps (Fig. 3). The
modified 1inear theory shows greatly improved correlation with exact theory
relative to ordinary linear theory for both expansions and compressions.
Also, where the Tineary theory predicts infinite perturbations at sonic edye
conditions for the swept raup in Fig. 3 (My = /2), tne modified theory on
the expansion side shows no tendency toward infinity. Use of tne local 3
eliminates expansion singularities because 1/8 approaches zero witn finite
pcsitive perturbations. On the compression side, the exact and modifiea
theories cannot be couputed at My = /2 for tnis two-dimensional case
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because the flow could not actually remain two-dimensional. However, it can

be seen that the modified theory will not predict infinite perturbations here
either, because as @, /V, — -1, exact boundary conditions cause v, and the

source strength to approach zero. Thus, an equilibrium must be reached with

the value of ¢, /¥, between 0 and -1.0.

4.0  ANALYTICAL AND WUMERICAL TECHNIQUES
An important numerical technique which allows the efficient evaluation of
the perturbation velocity integrals in Eqs. (2) - (4) is the use of Simpson's

Rule combined with stepping off from every integration limit by 0.07 times the
step size. For example, the exact value of the integral
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is m = 3.1416. Even though there is a square root singularity at both limits,
a two step (minimim) Simpson's Rule integration with the 0.u7 offset gives
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which is accurate to 0.27. The 0.07 offset is used at all times. Thus, no
special treatwent is requireu for singularities, and the offset is small
enough that its effect on non-singular integrands is negligible. This
technique was derived by the author for the square root and logarithmic
singularities which frequently occur in linearized aerodynanic theory.

A brief discussion of the reasons for choosing the format of Eqs. (1) -
(4) is in order. First, source distributions are used rather than higher
order singularities because they are simpler, and because they are adequate to
describe the flow around bodies with thickness except possibly at thin
trailing, side or subsonic leading edges where the upper and lower surface
pressures are not equal. The assumed source strengths vary linearly in both
directions on a panel and are continuous across panel boundaries unless the
slope is discontinuous. This continuity of source strengtns and the fact that
the panels can be curved in both directions allows the use of larger (i.e.,
fewer) panels to describe a configuration than would otherwise be possible.

Second, the form of Eqs. (2) - (4) was chosen for the following reasons.
The velocity components must be obtained from derivatives of the potential
function. The doudle integral in the potential equation cannot readily be
evaluated analytically and at least one integration must be performed
numerically. Numerically evaluated derivatives are highly unreliable,
particularly for the derivative of a numerically evaluated integral. A much
wore reliable, accurate and efficient method is to perform one integration
analytically, differentiate analytically for the three velocity components,
and then perform the remaining integration numerically for each velocity
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component. Having selected this method, the question remains of which
integration to perform analytically, the streanwise or lateral? Both options
were examined. It was found that analytically integrating laterally yave a
simpler integrand with fewer singularities and was much more compatible with
the translations required for characteristic tracing. The derivations of Egs.
{2) - (4) for laterally curved and flat panels are in Appendix A.

Because the perturbation velocities are strony functions of the local
B= Mc - » and the local g is a fungiion of the perturbed
velocity, an iteration is required. For the first pass, a rough estimate of
the perturbation velocities and g is made, based on the local slopes. This
provides faster convergence than using freestream g as the first guess. A
marching solution scheme is used. The iteration is performed at the front of
the configuration, then at the mid-points of the first row and then at the aft
end of the first row. At the front of succeeding rows, values of so ‘e
strength and 8 from the aft end of the first row are used with intes .ation
as needed if the slopes are continuous. If slopes are not continuot icross
the row, two-dimensional or conical solutions are iterated upon. Th  ‘*he
solution is stepped back to the mid-points of each row, etc. This p E$
makes the iterations more stable, as points on the back rows are no- ~+urbed
by variations in local 8 and source strength on preceding rows.

Variations in panelling techniques were investigated and two siynificant
effects were found: lateral curvature and continuity between panels. The
panel edges must be defined identically from one panel to the next to avoid
differences in and/or negative square roots in the hyperbolic raaius

x—(,\z _ V2o _ oz V&
/(‘T Voolemm - (2- 2
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calculations. Ditferences in the hyperbolic radius values, particularly if
near the singularity or zero value, can cause larye errors in the inteyrdana
because the net effect of all the panels is a swmall differences of larye
numbers. The following conclusions regarding curvature effects are based on
the format of Eqs. (2) - (4) and might be different if, for exauple, the
strearwise integration were perfonied analytically. Longitudinal curvature is
not important; i.e., if the exact value of slope is used in the boundary
condition and no gaps are artificially introduced, the exact ordinate or
streamwise curvature has a negligible effect. Lateral curvature is important,
however. In the vicinity of the receiving point and alony the
characteristics, it is necessary to use the curved panel solution frou
Appendix A. Each panel is approximated by a circular arc segment. The
curvature effect is used for at least two full panel widths away from each
characteristic. However, when xi < X*, the flat panel analysis is entirely
adequate. X* is defined as the strearwise location where the complete circle
corresponding to the circular arc approximation to a given panel lies entirely
within the forecone from the receiving point.

The curvature effect is used only for the laterally constant source
strength. The curved panel solution with lateral source strenyth variation,
besides being quite complex, gave undesirably large contributions in soie
cases. The flat panel solution for lateral source stremyth variation appears
to be more accurate and reliable, and so it is used even on curved panels.

Two values of 8 are used in the method. The true local g is used to trace
the characteristics, or region of influence boundaries. The true local lMach
and 8 are computed from the exact isentropic relation:
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The correlated g is used in the perturbation velocity equations. The
correlated g is determined by solving for the value which would make the
modified 1inear theory agree with a two-dimensional Prandtl-Meyer corner
solution with the same (V/Vy). From the modified linear theory for a
two-dimensional corner,

v, S
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The exact Prandtl-lleyer corner solution is:
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aVy

dx = Vcos (v-vg) - Vo

Substituting Eq. (13) into (9), we get
Vsin (v-vg = g [v cos (v-vg) - Vol

or 5corr. = Sin (V-VO)
cos {v-vo} - Vg/y

where both the numerator and denominator are positive for expansions (V > Vo
and both are negative for compressions {V ¢ Vo}. The Prandt]-Meyer solution
is exact for expansions, and it is also the exact isentropic solution for
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compressions. The difference between pressure coefficients on two-dimensional
ramps with and without shock effects are less than 2Cfor values of Cy < 0.5
and My < 2.6 as shown in Figure 4. Eq. (15) is used to evaluate the
correlated s except wnen Bcoprp, >10 it is set to 10, and when true local

Mach number is less than 1.4, a smooth transition is made from Eq. (15) at

HT = 1-4 to Bcorr = 0-5 at MT i l.u.

Evaluation of test cases on swept ramps indicate that imuch better accuracy
is obtained when the characteristics are not yawed even though there is a
lateral velocity component. But the lateral velocity component should be
included in evaluating V/Vy for the g8 calculations.

It is not clear whether the 8 used in the integrands should be the value
at the receiving point, at the sending points, or some average. In umost
cases, the difference was found to be negligible so the receiving point value
was used. But finally, a case was found where the choice of g8 made a
difference. On a cockpit-like forebody, where the slopes were approaching
zeru after being negative, the method predicted pressure much too high. This
was corrected by using an averaged 8 in the inteyrands defined by

; s ;J .
/ fu - E
e e ’

wiere Xg is the X of the receiving point, Xg is the X of the sending

point, and s; and 3q are the local correlated 8's on the left-running aad
rignt-running characteristics, respectively. uUse of the averaged g eliwninatad
the overprediction of pressure benind the canopy and nad no effect elsewhere.

The relative advantages of characteristic tracing versus the usual linear
theory see-through inteyration boundaries will be examined. A typical plot of
tue integrand in kq. (2) for an axisymmetiric body is shown in Fig. 5. Tne
singularity at X* is first order (i.e., of the form 1/x) and thus produces an
infinite result for integration from cne side to the singularity, but the
integrand is equal and opposite at x; = x* + § and x; = x* - §.

Tneretfore, the result of the total integration is finite if the source
strength is continuous. But, if the body has a slope discontinuity, the
source strength is discontinuous, and at a point located behind the corner
such that x* is equal to the x of the corner, the perturbation velocities are
theoretically infinite. It is obviously incorrect to get an infinite
perturbation from an area which actually cannot influence the point under
consideration. If characteristic tracing is performed, the point at x; = x*
and u = 1 will be outside of the influencing region. With the integration
taken only to the characteristic line, the integrand is finite everywhere.

The equations for the rate of lateral translation of the characteristics
or the forecone are presented. Let y be the 1ocal surface lateral direction
at tne characteristic, and z  the local surface outward normal direction. For
unyawed characteristic tracing, we get the simple result:

dy, = + 1+ 2

dx, 3
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For the see-through case, the rate is:

dy, = X% . 2] for X > X3
dx, PR

dy, =+ /1-822 for X = X)
dx 8

where y and 7’ are the coordinates of the receiving point relative to the
sending panel. The see-through rate is derived from:
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The usual linear theory (or see-through) integration boundaries are
compared with the actual characteristic boundaries in Figure 6. For point A,
the difference in the influencing region is not great. At point B, the
see-through method is obviously unusable with surface sources because the iach
forecone does not include the surface anywhere near point 8. This condition
occurs wien 8 € ¢ - 1, and while extreme, it does occur on a fineness ratio 4
¢ircular arc body at rach numbers of 2.0 and above. The method is also usable
when 8 ¢ > * 1.

As shown in reference 1, the characteristic tracing metnod js more
accurate for moderate-to-high-angle cones, wnile the see-tirough method is
better at predicting the masiwuit expansion pressures 03 siender circular arc
vodies.

The characteristic tracing technique eliminates contributions from areas
wnich cannot influence tine receiving point, such as a strut or vod on the
lower side of a wing which cannot affect tne upper surface of tne winy.
ilowever, tor nulti-bodies and bodies with step discontinuities such as inlets,
the characteristic tracing adds considerable couplexity to the computer logic
required. Tne complexity arises because of wultiple possipilities for
determining regions of influence. When a receiving point is downstream of a
step, the region of influence of panels upstream of the step can be determined
by: (a) the tracing through space of a characteristic from anywhere along the
step, {b) the tracing of a characteristic from the edge of the step along the
surface, or (c) the tracing of a characteristic along the surface from aay
location defined by (a) above. In addition, these complex regions of
influence can be different for different receiving points, so the calculation
can not be done once and used repeatedly.

It is concluded that the characteristic tracing method is superior to the
see-through because of; 1) the elimination of the infinite perturbation from a
slope discontinuity; 2) the capability to cdalculate accurately when 8 ¢ < - 1
and to calculate with 8 ¢ > 1; 3} better numerical accuracy on moderate-and
high-angle cones; and 4) the elimination of contributions from areas which
cannot actually influence the point being considered. These benefits outweigh
the overprediction of maximum expansion pressures on siender circular arc
bodies and the additional complexity of the calculations.

fdaving selected the characteristic tracing wethod, translation of tne
receiving point couordinates is required to maintain proper values of the
hyperbolic radius. For axisymmetric bodies, tne only translation required is
an x translation. For correct results, it was found necessary to keep the
hyperbolic radius value equal to zero on the characteristics in the vicinity
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of the receiving point. By numerical experimentation, this "vicinity" was
defined by the angular difference between the y - z projection of the surface
normal at the receiving point and the normal on the characteristic being less
than cos (0.16) = 80.8°. After a characteristic has left the "vicinity" of
the receiving point, the x margin from the forecone (hyperbolic radius = 0j to
the characteristic is allowed to become positive but it is not allowed to
decrease. I.e., As the characteristics are traced forward, x translation will
be done if necessary so that the margin is always greater than or equal to the
margin at the previous point on the same characteristic. The translated
receiving point coordinates (Qx, Qy, Qz) are single-valued functions of xj,
the x integration variable.

For non-axisymmetric bodies, y and z translation way be required. The y,
z shifting will be considered in two parts. The lateral part is in the
direction parallel to a line between the two characteristics, and the vertical
part is perpendicular to the same line.

The lateral translation is required on general body shapes so that the
hyperbolic radius can be zero on both characteristics in the vicinity of the
raceiving point, and to maintain the proper margins or values when one or both
characteristics are not in the vicinity.

Vertical translation is required to prevent bulges such as canopies from
projecting into or near to the forecone from a point behind the canopy. This
is not a problem caused by characteristic tracing; rather, it can be handled
because of characteristic tracing. At a given x1, all panel edges between
the characteristics are tested and Qy and Qz are shifted according to the most
critical panel edge and the criteria Zz) > ri/3,
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4 . ( 4

— e e -'JJ.;

J@MM-‘L
where r1 is the radius of the circle passing through the panel edge and the
two characteristics, and rz is the radius of the forecone at Xj.

On some general body shapes, the use of characteristic tracing results in
an anomaly. This anomaly cannot occur on axisymmetric bodies, but will occur
on shapes such as elliptic cones or bodies with flat or concave surfaces, for
example. When the inward normal from a characteristic trace has passed
through the y-z projection of the receiving point, the value of hyperbolic
radius increases as the characteristic is approached laterally instead of
decreasing or approaching zero. Usually, on a panel cut by a characteristic,
the integrand has the opposite sign relative to neighboring panels. But when
the hyperbolic radius increases to the characteristic, the integrand has the
same sign as neighboring panels and larger magnitude, resulting in a large,
erroneus contribution from panels which are on the opposite side of the body
from the receiving point. Tiiis large undesirable contribution has been
eliminated by neglecting the integrand when the above-mentioned condition
exists and a Tateral 1imit is a characteristic.
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The non-integral terms in Eqs. (A-21), (A-22), (A-29) and (A-30) occur at
the receiving point when the point is on the body, and they also occur in most
cases when the forecone intersects a nearby body or when two panels intersect
Taterally at approximately a right angle.

Consider a single panel with a side edye at yq.

’

' i_——-/._--—rw_,.__ [
R AN 2 atain
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When y>ya, the non-integral term is a unit value and is the entire effect,
because the integrands are zero. When y>yg, the non-integral tem is also

the unit value, but at y=yg it is half of the unit value, and when y<ys,
it is zero. The integral contribution is such that the net effect varies

smoothly from the unit value at y=ya through one-half at y=yg to zero at
y=yB.

non-integral ter
L

’

PN
.¢7 —net effect
s
/ ]
0
2f Y o
Yo ) ta

It was found that the numerical inteyrals in Eqs. (A-29) and (A-BU% could be
significantly in error at a lateral corner because the teru (X—Xl)ﬁ’- -

(2'21)2 in the denominator becomes very small. In the vicinity of the
characteristic, let X; = X - t, where (X'Xs};t‘(z'zs)d -
()’-.Vs)2 = 0. Then the singular and near-singular terms are of the form:

e (e e A _
L= 4 [(_‘.:_':j_'f')_Cz—zsfe,c)i_‘,ﬁ‘_:z;:f\'—_(g. -,;5.,@".:7_:;\" )
i dx / N
= XX S 8,1 — CoaL-
[[(?'75)’1{‘73'&("1:%"k?""j‘__/ 1{‘7:3-6(2‘1_,“)}(0117‘#‘-5'5/(
If we neglect the second order terms in t, we have:
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If we apply a ratio to the Simpson's Rule contribution at the usual .U7
offset, and set the Simpson's Rule result equal to the analytical result, we
can solve for the required ratio. Note aX above = 28Xsimpson's.

T | ! 4 RATIO }_ 2 Ny
—_ + == /=75 Tan /[—¢ 23
J };7—7"//"."\/"\‘— T (7. vi* T2 (oTTen?)[035T | yi® viz 29
r e 7T / +/Z 5 1)
Gy e 77/ v l\- - IM — - - e =
RA T lv—,/.OJJ'(/ v o7y 42T YT LT Tyl

This ratio is applied at the endpoint of the integrals in Eqs. (A-21) and
(A-22) or (A-29) and (A-30) when (Z-Z¢) > |y-ys{, there is a lateral
discontinuity at the panel edge defining the lateral limit of inteyration
opposite the characteristic, and Yl is not zero. When Y1 is zero, it can be
shown that the correct limiting value will be obtained by using half of the
usual non-integral term and that no ratio is needed on the integyral ter.

The wing solution included in the current version of the routine involves
soe approximations. The calculations on the wing utilize a routine which was
developed earlier for wing-alone calculations. It uses a planar source sheet
to represent the wing, and the boundary conditions are satisfied in the chord
plane rather than on the upper and lower surfaces. Therefore, the wing
solution is symmetrical; i.e., it is the same on the upper and lower
surfaces. Only the normal and streamwise perturbation velocities are computed
on the wing. The lateral velocity is assuiied to vary from zero at the
wing-body intersection to a maximum. The maximum occurs at the leading edge
for subsonic leading edges or at and ahead of the itach line from the wing-bouy
intersection for supersonic leading edges. The maxiwum lateral component is
such that the total perturbation component in the wing plane is perpenaicular
to the leading edge. In the wing solution, except for the effect of body on
wing, a reflection plane is assumed at the wing-body intersection. because of
the planar solution, the normal velocity is equal to the source strength. The
wing-on-wing solution uses the saie modifications to linear tneory as the body
solution, except it uses see-through rather than characteristic tracing; and
the free-stream (X) direction integration was done analytically. For the
planar case, the analytical X integration case simplifies considerably and is
more efficient computationaliy. The wing slopes and source strenyths are
fitted with cubic polynomials streamwise and parabolas spanwise.

The wing-body interferences are accounted for by first computing the
wing-alone solution with a reflection plane at the wing-body intersection.
Then the body solution is calculated including the effect of the winy.
Finally, the streamwise perturbation velocities on the wing due to the body
are determined, and the wing solution is iterated again with the body-on-wing
velocities added.

For blunt noses, local subsonic flow occurs. The nodified linear theory
will provide a solution with local subsonic flow, but unless the local Mach
number is close to 1.0, the accuracy will be poor. For this reason, a
modified Newtonian solution is included in the method. The nodified Newtonian
solution includes an adjustment factor from Ref. 2 which provides improved
accuracy at low supersonic freestream Mach numbers on hemispherical noses.
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The pressure coefficient equatiogsjs: ‘
CF = C.., (/ - .M&.{’_ - '.-.5 o
E) Mw).f_ 0.3

where Cpn is the pressure coefficient behind a normal shock wave, My is the
freestream Mach number, and § is the local slope angle. The modified
Newtonian pressures are used until the local Mach number reaches 1.1. Then, a
total pressure loss factor is applied to match the modified linear theory
pressure to the modified Newtonian value. This pressure loss factor is then
attenuated exponentially downstream. The scaling constants involved in the
attenuation were determined empirically based on a small amount of data, and
further analysis based on a broader data base would be highly desirable. To
prevent the (1-g¢) term in the denominator of the non-integral terms in .
and ¢, from reaching zero at ge=1, it is replaced for se¢ > 0.8 with an
arbitrary function with a minimum value of 0.1 at ge = 1.0. This is necessary
to provide a reasonable solution on blunt noses. At Tongitudinal slope
discontinuities, the exact isentropic solution is easily calculated in
addition to the modified 1inear theory solution. When the modified linear
theory solution predicts a higher pressure immediately behind the corner than
the two-dimensional solution, a pressure loss factor is applied in the same
manner as was done at the modified Newtonian matching point above. The
pressure loss factor is again attenuated exponentially downstream.

The values of source strength, pressure coefficient, velocity components
and 3 are all assumed to vary linearly across a panel in the lateral
direction. They are continuous across panel boundaries unless there is a
lateral siope discontinuity. In any given row, the numper of unknown values
of source strength will be the number of panels plus one, plus the number of
lateral slope discontinuities. Each slope discontinuity adds an unknown
because at that panel edge there are two values of source strength instead of
one. Tne number of control points at which the boundary condition of no-flow-
through is satisfied must be equal to the number of unknowns. Starting at the
top centerline of the body, control points are placed near the initial panel
edge and also near the opposite edge of only the last panel and the panels
preceding a lateral slope discontinuity. The control points are offset from
the edge by a fraction (currently equal to 0.2) of the panel width to provide
better averaging in the event of non-linear variations and to avoid possible
singularity problems. The assumed values of source strength and g are at the
panel edges. The calculated values of perturbation velocities, 8 and pressure
coefficient are at the control points, and these are extrapolated linearly to
the panel edges for interpolation purposes and to provide the s estimates for
the next iteration.

A restart capability is incorporated to allow extra prints or geometry
changes at minimum cost. Using the restart capability, geometry changes can
pe made without having to recalculate the solution ahead of the point where
the geometry changes. After the calculations for each row of panels has been
completed, the pertinent common data is written to a file which can be saved,
providing capability to restart the calculation for one Mach number at the
beginning of any row for which all preceding row computations were completed.
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570 COMPARISONS WITH WIND TUNNEL DATA AND OTHER THEORIES

Five cases were selected for testing the predictions of the modified
linear theory against wind .tunnel data or other theoretical methods. The
results of these comparisons could then be used to establish the validity of
the modified linear theory method. Comparisons for the five cases are
discussed below.

5.1 Analytic Forelody

An analytically defined forebody shape was tested in the Langley Unitary
Plan wind tunnel. Pressure data were obtained at several Mach numbers,
angles-of-attack, angles of yaw, and at many body locations. These pressure
data are reported in Reference 3. The modified lin2ar theory method was used
to calculate pressures on this body, called Forebody 4 in Reference 3, at zero
angle-of-attack and zero yaw at the four tested Mach numbers. The body shape
is shown in Figure 7. Calculated pressures are compared with the neasured
pressures of Reference 3 in Figures 8 through 17. The agreement is quite good
considering the high slopes on portions of the body. Linear theory
significantly underpredicts the pressures on the upper, forward portions of
the forebody at ilach 1.7, but the modified linear theory compares well. At
the higher Mach numbers, linear theory is unusable because 3¢ is graater than
1.0, but the nodified theory continues to compare well with the data.

5.2 Drooped¢ Hose Bodies

A series of bodies with circular cross-sections and parametrically vavying
anounts of nose droop have been tested in the NASA/Langley Research Center
Unitary wind tunnel. The results are to he published in the near future by
Barry Shrouyt. One of the body shapes with sixteen degrees droop is shown in
Figure 18 as displayed by the graphics routine. Tho pressure, o wave, drag
results were obtained by subtracting estimated skin friction drag fron the
neasured forces. Pressure drags predicted hy tihe modified linear theory for
three bodies at three ilach numbers are compared with the test data in Fiquie
19. The agreement is quite good, and is much better than the far field (area
rule) results.

5.3 Conical Wing Bodv

The conical wing body consists of a symmetrical wing with blunt trailing
edges and a mostly conical body underneath. The maximum thickness of the wing
is at or near the trailing edge. The planform is a 570 svept delta with the
outer trailing edge cut off at an anglae. The body is a segment of an 8°
cone over more than half its length with a transition approaching a constant
section near the aft end. Sece Figure 20. This configuration has been tested
in the NASA/Langley Research Center Unitary wind tunnel and the data are
reported in Reference 4. At HMach 1.6 and a Reynolds number of 2.0 x 10
G/fFt., the Cp,. 1s 0.0186. Subtracting estimated skin friction drag of
0.0063 leaves a measured pressure drag of 0.0123. The modified linear theary
calculation yields a pressure drag of 0.0039, consisting of 0.0014 body drag
and 0.0025 wing drag. A close examination of the geometry reveals that the
wing leading edge is very blunt. Also, the wing is conical to the streamvise
station of the wing tip. A conical flow calculation using the modified linear
theory with the wing defined as part of the body and input points concentrated
near the wing leading edge yields a drag prediction of 0.0082. Thus, most of
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the discrepancy is explained by the inability of the wing solution to
adequately represent a shape where nost of the drag occurs in the first one or
two percent of the chord.

5.4 ilissile With Inlets

A missile model with axisymmetric inlets was tested at NASA/Langley
Research Center and the data are to be published soon by Clyde Hayes. The
arrangement is shown in Figure 21. The £=900 tail orientation witi wings
off is compared at Mach 2.5 with the wind tunnel data. The measured Cp_.
is 0.52 from which estimated skin friction drag of 0.20, spillage drag gEn
0.04, and houndary layer diverter drag of 0.02 are subtracted, for a net
experimental wave drag of 0.26. Due to difficulties with the computer
routine, it was necessary to run the configuration iin parts: the forward
body, the aft body, tails and inlet 1ip. The modified linear theory
prediction is 0.27 for the wave drag on the body, tails, and inlet lip. This
is considered to be good agreement.

5.5 Area Rule Comparisons

The axisymmetric bodv for this case consists of a tangent ogive nose
followed by an arbitrarily "coked" section. A tranezoidal wing with 450
Teading edge swueep and a 65A005 airfoil is located at two positions. Sce
Figure 22. The foruvard position provides positive interference drag hotueen
wing and body and the art position results in ncgative, or favorable,
interference. Area rula2 and noditizd Tinear theory drags were calculated for
Mach numbers from 1.2 to 2.0. The body alon¢ and wing alone drags are
compared in Figure 23. The bhody alone drajgs ajgrae quite claosely with the
rmodified 1incar theory values being slightly higher at ilach 1.3 and 2.0. The
ving alone drags agree fairly well except at the sonic edge llach condition
where the area rule drags are always high. At dach 1.6 and 2.0 {supersonic
leading edga), the modified linear theory drags are slightly higher.
Interference drags and total drags for the two wing positions are shoun in
Figure 24. The interference drag predictions are sinilar, except the modified
linear theory does not predict the very large interference effects at iacn 1.2
as doas the area rule. Intuitively, the area rule interference effects at 1.2
Mach, particularly for the aft mounted wing, seem too large. Also, on the
total drag, the modified linear theory curves are swoothar because of the more
reasonable results for the wing and interference drags.

6.0  COHCLUSIONS

Comparisons between wave drag and pressures as predicted by the modified
linear theory and as obhtained from wind tunnel tests or area rule predictions
were made. In the conical wing body case, agreement was poor because of the
inability of the wing portion of the routine to adequately model the extremely
blunt leading edge. In the other four cases, agreement is good. For the
analytic forebody, good agrecment was obtained with wind tunnel measured
pressures over a wide Hach number range on a shape which has high local
slopes, where linear theory is unusable and area rule is highly fnaccurate.
On the drooped nose bodies, pressure drags predicted by the modified linear
theory agree well with the wind tunnel data for the thre2 drocp angles and
three Mach numbers. For the missile with inlets, wave drag calculated by tae
nodified 1inear theory ajreed with wind tunne! data for the one case
examined. In the area rule comparisons, the modified linear thecory drags
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agreed wvell with the area ru]e‘Va]ues except in a few areas where there is
reason to believe that the modified linear theory results are more realistic
than the area rule values. It is concluded that the accuracy of the modified
linear theory has been verified.

[t is recommended that the modified linear theory be used to predict
supersonic pressures and wave drag on any bodies and wing-bodies which include
areas of moderate to high local slopes, or which have any areas including wing
leading edges which have supersonic edges (ge > 1). It is also recormended
that the computer routine be improved to make it more efficient, general and
reliable.

14




REFERENCES

1.

Stancil, R. T., "Improved Wave Drag Predictions Using Modified Linear
Theory," AIAA Journal of Aircraft, Yol. 16, Number 1, January 1979, pp.
41-44.

8rickman, J.E., "The Determination of Flow Over Blunt lose Bodies of
Revolution at Transonic and Supersonic Speeds," Master's Thesis, Univ. of
Tulsa, 1964.

Townsend, Janes C.; Howell, Doro*thy T.; Collins, Ida K.; and Hayes, Clyde,
"Surface Pressure Data on a Series of Analytic Forebodies at ilach tlumbers
From 1.70 to 4.50 and Combined Angles of Attack and Sideslip," HASA TM
80062, June 1979,

Miller, David S.; Landrum, Emma Jean; Townsend, James C.; and Mason,
William H., "Pressure and Force Data for a Flat wing and a Warped Conical
Wing Having a Shockless Recompression at Mach 1.62," NASA TP-1759, April
1981.

15

e




LINEAR{ZED
BOUNDARY CONDITION:

v1=v0 aS

A

EXACT BOUNDARY CONDITION:

Vo TV, 0080+ v, sind=V,(1+—)wan¢
VO

Fig. 1 llodification 71 - Exact
Boundary Condition

REGION OF INFLUENCE

CONSTANT OF PROPORTIONALITY,V?
EXACT RELATION

FOR LOCAL MALH

\ CORRELATED
EXPANSION LCCAL MACH

Fig. 2 Modification 2: local 2

16




N

038 r )/ COMPRESSION
N7
2
L (>
0.6 V’

s, \\
~

0.4

0.2

PRESSURE
COEFFICIENT, o
Cp

EXPANSION

-0.6} ——— EXACT ISENTROPIC SOLUTION
—-— LINEAR THEQRY
===~ MODIFIED LINEAR THEORY
-08
Fig. 3 45-deg swept ramp pressures.
2 s
a
!: ‘:";’/ {7\""‘
i \.\/’/’{_‘_ 3
3l 2-0 Pames ST
2. / R0
e
f A
Y ’/;; o
N
Eo«# _,'/
’ o T4 .3 -

Fig. 4 Isentropic and exact
ramp pressures,

17




¢ x INTEGRAND

0 X1

N
e _ 7

X* X

Fig.

%* )

SEE-THRU INTEGRATION BOUNDARIES

5 Typical Integrand

CHARACTERISTIC LINES >

Fig. 6 Alternate Influencing Regions

18

‘.h‘___l_ Gl omn e




10343

SUINNOD IDNAT————— |
SINIOd MoW— |

SiN10d u»i]

SiN10d uﬁ

ANTYd

S$341$

din

IS

AUwvioy

UVISNVIL

K4310W00n Apoqauod oLif|euy - £ aunbiy

19

0°'S 6°'0f @'9 @¢°S- 0°¢1-6°9- dIT
‘L ‘e L L ¥ “WIINDD

°0 ‘e "o NOL4viOY
AQOR3M04 TWILLATYNY ANISNNOL

43S VivQ 11dWWS wSwN

= GNWANOD N3iNI




Ll Ydey ©S34nssadsd 3dejung Jsaddp - g 24anbiy

el
Anid

\ FAUNIQEORD FSIMWYINLS

|2 4
—

SSYHW
QZ;\RQ.I\

~ X
°

-

(AYO3HL ¥YINIT)
3000 1011d YIYNVd ——

ViV 1S31 T3NNAL ONIM

\
AYO3IHL ¥VY3INIT Q3141000 —O— \
\
INTTYILNID ¥IddN NO STUNSSIYd Mu \h\
L'T = HIWW ~ o
[ ] I.
AQ083403 INIT-L1dAI00 JILATYNY 8

T

440

4 SO

‘v

20




G*2 "B ‘S2unssaug voeyuns Jddu, - 5 aunbly
Qe m
m\.& R 1ne-
’ 0 ’
_._\ d/ N DD ClAWAVTIYI S - X
o omo o - g v 7
r 7 T T \ v T L] 1 Q
] \
) 0
» ; Ra
\ _
/ \ 1o
! \
f \
/ /:
‘0N
, ﬁ 20
n
_ / \.\_4
& \ \Q
\ . P £
,~w \\Q -
/7
a [
L]
\ o \w\ . 'y
dv, -
n
VIVa LSdL TINNNL ANIM ®
AYOdHL ¥VINIT dHIJIAOW g — n . 50
. ANTTIHLNID ¥dddn NO SIANSSHAUJ 9°0
G°C = HOVW
AQO93dd04d IATT-LIJAD0D DILATVNV
10

21




—_—— —- - f -

” GO Yol *S8unssidd ddejung Jd9ddy; - y| 84nbtL4
oS e e TRIMIYY TS
| +i ) N - x - 0
f T T T T

_0O- .
GannmR

| atk ",
| S/ %
: / N
® R
/ \
| / \
/ ©m
/ \
O \
\
W |
\
\
oM
\
\
\
-
vlvd 1SJL TIANNNL QNIM W \ a
\
A¥0FHIL ¥VINIT QAIIIAON —OQ —- LN /
o§ )
N
] [ ]
»
s

ANITHIINED ¥AddN NO SHANSSHYd
G6°¢ = HOVH
AQO9dI0d IAIT-LIAND0D DILATYNY

[ -

10

120

o

£°0

ro

22




G*p Yoey *$9unssadd @oepans Jadiq - (( d4nbL4 17
4 =20-
4 ro-
- -0 = Q.
. l,m sanb S TAFNIGY00D FSIMHVIYLS - =
#1 h«\ 2/ o/ \m 8 9 # z
=7 T T \ A M v v 0
‘A
N
\ 4 /7°'0
\
\
'\
/_ \l\‘%u.o
»,- ,
\ '
//g O\\. 4¢€0
viva 1S3L TINNNL ONIM @ . -
AY03HL ¥VINIT Q3I4I00W -oO-
4 #0
INITYIINID ¥3IddN NO SIYNSSIUd
05°% = HIWNW »/
AQ083¥03 INIT-LI4ND0D IILATUNY fa, 4 50
t -0
<90




0°h = X “L°L yoew “saanssadd uotieis - 2| 34nbl 4

(o A
[REY] ..: . wi i ! 7 :v\. C_\ . .
f T 1 e LA R T T T ¢
47
0- P o=~ T " "0~ _ _ __ __ _eo_
» » e " (o] /o//
n W/
? {5 ¢
\
// 4
B
\
\ 14+
Q
\
\
B\
@,
fan
viva 1SIL TANNAL QNIM ™ |
AYOdHL ¥VANIT QAI4IAOW — o -
0% = X
LT = HOVH

AdOdHd0d UANIT-LIdAD0D DILATVNY

24




e e e ————— ——

0°L = X “L°L YJeW ‘saunssaug uotiels - g a4nbidg

VIiVd LSIL TANNAL ANIM ™
AYOJHL YVANIT QATJIAOW — o —

0L =X
L°T = HOVH
AJOg9d¥0d MATT-LIAND0D DILATYNV

ﬁ.\\\\\. nVL o= Nw

=1 ~9 <t o3y 22 3 S > 2 o}

I t k) T I [ T ] Tt
- R - - = .

s o--0--0F--F R n- . _ O~

on a u, ic)
~~o- - —o”

3

25

- -




0°0L = X “/°L YoeW *S34nssadd uoLyels - | aunbly

i Ny .\&
oy Y] w4 AR ! ' v (07 o
\ } Tf l ! i f 1
VIVQ LSl TANNAL anim M
RO0HEHL ¥VANTT Q3I4I00k — o
L
E ] - =0 o1
] » \G\\\\S L NG ] \\
o— — Moo _ _ o”
00T = X
L'T = HOWVHW
AQO9Hd0d IATT-LI4dMN00D DILATTIVNY

¢ .,
——y

26




0°F = X ‘G'h udey *Saunssadd uoileis - G aunbi4

( \\ii Q- x
~| ) ol g A € oc 0
| v T T i i T T ¢
1<
" [ ]
(] o — B,
'OrIIIQ..||ﬂ|'IQB|.\\\ @ - .
~N
Q 177
124
.
N ¢ 0
’/
\
\ 1+ 0
Vivd 1SAL TANNNL aQNIM ™ n,
A¥4OFHYL ¥VANIT QITIATIAOW — o —- \
\
\ 1Iﬂ.Q
) o
0% = X
G'% = HOVH
AQO9aY0d ANIT-LIJND0D DILAIYNV dgg




0°f = X *G' yoe *saunssadd uoLieis - 9| aunbiy
(50 ) Wl
B v r L L o o L
Nk d 4\ qw\ 1 r 1 T T T O
] » ] L n A . ] ]
O - o e o m— e . o- - o ,:f,o4-:/o R 10
~ N / ! .
of .
O/ a D,
N
oL 70
o)
[a9] *
d¢°0 ~ \
VIVAd LSdL TINNNL ANIM ] g !
AHOUHL dVINTT QATAIAOW —ow —
0L =X
G°% = HOVW
AQO9EdO0d INIT-LIAMI0D DILATIVNY
|
T




0°0L = X ‘Gt YydeW ©saunssadg uoLyeys - Ll 94nbi4

e

(i), ovi =g

0°01 = X
S'% — HOVK
AQO49d¥04 JATT-LI04D0D JO1LATTYNY

Y <o U S (A4 w9 < (%14 C
! } i | | [ T T 10
—4 \ .Q -
‘!\9\!\ ék
Plog
] n . n R \’ . ¢
0.||l|0\|||lll0/// n " \l\O\ ~
/ltul.Olll!\O\ \,U
410
VivVa 1S4l TINNNL dNIM n
AJOdHL ¥VINIT AQIIJIAORW — —
~=Z2'C

29




SINIOd 3n0W

§INIOd 31001

SINIOd X

ANIvd
$4IS
dan
Ivas
Uvi0N

UNISVIL

\

AN

\

adeys Apog asoN padooug 9L - 8l 3anbt4

S 0°01 0°9 ¢°S- 8°01-0°9- 4110

91 +400¥a

EI°F 00°0 09°0 03> ¥ ‘NIUNID
e 0 o0 NOILViON
438 Viva IBuvds

$31008 330N 0340000 J1/VEW

30

= QNVRIOD N3AN3

y



i co e

j © | EXP. WAVE DRAG (x=0,5K1N FRICTION REMOrED)
T L T T FAR FIELD WMAVE DRAG (ARZA RULE)| =~ =
T RS MPUIFIED LINEAR THEORY WAVE DRAC
s NP A S R R s A ‘
, 4 ; : 5
: - ! :

2=
‘ .
3 ==
U ; . ?
e f . R
: Co
i P
o ; t

4 & 12 6 25

DR20P ANGLE , PEG.

Figure 19 - Drooped Nose Body Drags

~

31




— ey s ——

.

FOTTOM vizi
' .

Vi

S,

i p-Adh .
ERas aa e ~ o

l
t

SIDE} VIEW

a4 . 50’.”’ ]

Cownt
L —

}
!

.'

Figure 20 - Conical Wing Body Shape

32




‘pol0Y SuImsBylO
TSRIUN 1IIAWIIUNY Ut 8P SUOISUBWID My  |AFOL §€ Siiejaq-
TUCHIEI B UOY 12U NspIwetsize Uiw) Jo Juiwahuraze |#13UdH

| \ : ‘ - i
S Ny E ! - - 08 LN e
R 77 ‘ _ ’ [
. N v - ' - 99979 =

LZ 84nbyy

Jezte

\
A - ™~ JF
ol \ ¢ TS =0
" S \ . / NN
N e - oS el o PR
= — S /?d|.l|<.w'||| ———— 1(|.?| - - \\\ Y e /‘ -+ — dxplv\
. . \ v ' Vot /K [ —
/‘ [} _ - . - — T \\,,/
K14l =7 -~ 7 Jk N
! i 6€
R - : elp g ——mme N o ﬂ
¢ ) 1
S .m o -
.
0 i - -

B e A D e
ﬁ!/n},lli I . L —
| i . o o _ o \“‘.\‘\\\

! _ q
if8 ¢v S W _/
A 09€ 98 'S "W 0Cr f8 § 098°22°S W 0 m
: L S A !
. 69 7001°S W 13U 310213920 rapny ‘-
089°901°S W | o : ;
— _ﬂ 09910175 'w m | | A
\ J i / o ¥ SPror
\, ‘ ! | \ ~
, i -
1o , g
r - o
R S {
j
T - T -
_ 1L , _
b T KR
- e e A SN Krvo 561 pue s1yele
' : Jo) ucyieio) bugp
/ ;
‘\ .\\
;o
Al " .

33




QNN T

T

Y TS Voo T 10

$95e) UOSLueduo) 3|NY eaUy 404 UOLIeUNBLIU0) - 22 34nbL4

124

| g |

34




> \ Bzl ALONE
« i
[~ '
4 ~
Ll
- T T T s
VIaClH L
~ =0 == MOSITIZa LiEAY TeZoie
% ArEA RYLE
02
WING ALormE
J T e
¢ b -
S —_— =0 — — = s =0 — —
3 -0
QA
| !
9 |
; P ,
- % {2 /.3 2.0

M~ts Mo,

t

Figure 23 - Area Rule Comparison - ¥ing Alone and Body Alone Drags




2 T AL

Y MTERFEVRENCE

C

S
Y

<
L)Y

’

S

-0l

-C2

TOTAL WAVE DRAG

— =T = — MOUISIED L NEAe TE
[EPU VR AREA TyLE

;;@__\__S\Fh«(k MOUNTES MING -
INTERFEKENCE URAG
‘—,‘__’_,,.-

/2

[+ Lé 1.2 2.0
MACH  NE.

Figure 24 - Area Rule Comparison - Interference and Total Wave Drags

36




APPENDIX A

DERIVATION OF PERTURBATION VELOCITY EGUATIONS

A.1l Curved (Circular Arc) Panel with Source Strength Laterally Constant

The velocity potential is
¢:_ \/2 // S (v,

YVed o, Ads (A-I\
T g2

where ds = /c( :1,1* d ’—,2 on the surface of the panel. No subscript
or a Q subscript (below) indicates the receiviny point, and the subscript 1
indicates the sending point. S(x1) is the source strength at x]. The
curved panel is assumed to be a segment of a circle; thus with ds = r] d u,
¥y =r1 sinu and 2] = r{ Cos u we have
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where y and z nust be defined relative to the center of the circular arc panel
segment. OUn any panel, the curvature and (y,z) coordinates of the arc center
can vary with x. The angle u is positive clockwise and r] is defined as
positive for convex panels and negative for concave panels. We will inteyrate
from left to right, so r; d 4 will be positive for both convex anu concave
panels. Now if we Jet y = o, the u = o direction is defined by the vector
from the center to (0,2z) for convex panels, and the opposite direction for
concave panels (i.e., from the receiving point to the center of the panel
arc}). Also define rg as the vector length from the circular arc center to

the receiving point, but with the same sign as ri. Now
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In Eq. (A-4), if k; < 1, the inner inteyral is an elliptic inteyral of
the first kind with modulus

4/1_ n,

IS :

and ky < 1 when x1 < x*, where x* is defined as the x] where the
forecone passes through the opposite side of the (imaginary) couplete circle
defined by the radius of the panel element being considered, or

X*=X-B

1
i
N

I‘Q +org*

For x > x*, we must transform again using sin u = k] sin ¥ - This gives:
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For the last transformation to be_sinyle-valued, we nust limit - /2 < . < #/2
(-a<cu<n). Thencos w= /1 -sind yandcos ' =,1-( ' 3=
Defining ky = 1/kj, we have:
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where to include the complete area of integration, the bracketed ters in Ltq.
(A-8) must be summed over all the panels within the area of inteyration
defined by the characteristics. Also, except for bodies of revolution, x*
will be different for each panel.

The next step is to differentiate with respect to x, y and z to obtain the
perturbation velocities. The y derivative will be taken first because it is
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simpler and is the same for x] < X* and x] > x*. Goiny back to Eq.

(A-4), the only terms that are functions of y are the limits of inteyration
on 4 when not on a characteristic, and then
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The y derivative of Eq. (A-4) can be written in several fors:

. N - e
. Voo, SO 1
¢ = _71 P 7RI A E3 ‘Lx.
4 5 g T g L‘/(hg - /_I'L“\'fl‘)—4>/1,' ey
_.!#‘—
< ) B )
Y 4 a SO , | [
. - T —— {
- V- A= , 2 L - X
F o [ At
1= Rl ‘ 'v_ _—4,*4 )
/.' e r N
V., ! — e L
= = . TN < <
] s 3 _[‘; : - 1(» , _ -~ -

but if either lateral limit is on a characteristic, set that term to zero
because on a characteristic
,3_‘:# = :_)_u = O
37 2'4]
For the x and z derivatives, we will need to take derivatives of the

limits of integration. The upper limit (x¢ or xg) of x integration is, in
the vicinity of a point A on the surface o? the body where ¢ is the local siope,
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The lateral limits, when x < x*, are functions of ¢ or u which are independent
of x and z, so

¢ = o u‘i‘M\ X <« X ¢ ..’,Q 73
z .
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2¢ -
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When x > x*, the u transformation is such that on the forecone
(characteristic), w = #+ =/2. Thus,
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> X Sz - for x > x*, on a characteristic A~/%

But with x > x* and the lateral 1imit not on a characteristic, frow sin u =
k1 sin ¢ we derive
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Now we are ready to differentiate Eq. (A-8) in three parts: (1) the
derivative of the upper limit on the x integration, (2) the derivative of the
lateral limits of integration, and (3) the derivative of the inteyrand. A
contribution to part (1) occurs at xc = x when the receiviny point is on the
surface of the body, and also whenever there is a Jocal maximum of the
integration variable x) due to the forecone from the receiving point traciny
directly to the body (panel) at a right amgle. At these points, kp = U and
F(O, * =/2) - F(0, 7 =/2) = = = with the sign determined by the siyn of
rk. ?o differentiating the upper limit of Eq. (A-8) and substituting Egs.
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where the forecone from the receiving point traces directly to X] without
first passing through or around a body and the area inside the characteristic
has a 1ocal x maximum at x). The z direction in this case is the outward
normal from the sending panel at x3. In the most common case, x; = x and

ry = Y'Q.

The second part of the x and z derivatives comes from the derivative of
the lateral limits of integration. This contribution exists only when x > x*
and the 1imit is not a characteristic. Differentiating tne  limits of Eq.
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except use zero when u_ or wy are on a characteristic.

The third part of the x and z derivatives comes from differentiating the
integrand of Eq. (A-8): - ) ) .o
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Combining the contributions from Eqs. (A-17), (A-19 and (A-20), we get for
dx:
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The g¢ and ¢ integrands are functions of incomplete elliptic integrals of
the first kind and their derivatives with respect to the square of the
modulus. The amplitude may be negative, and F(k, - ¥ ) = - F(k,w). The qy
equation (A-10) is much simpler and contains no elliptic inteyrals.

Several pertinent facts regarding Eqs. (A-10), (A-21) and (A-22) are: (1)
the non-integral terms occur whenever the characteristic from the receiving
point intersects the sending panel at a right angle without around or passing
through any intervening surface and either the sending panel is convex, or the
sending panel is concave and the (y,z) projection of the receiving point lies
between the panel arc and the center of the arc; (2) the inteyral ters are
actually lateral summations over all of the panels within the bounds of the
characteristics and X* may be different for each panel; (3) the terms
containing cos u must be set to zero when the  limit is a characteristic; (4)
the positive zand u = v = u = U directions are defined by the vector frou
the (y, z) center of the sending panel arc to the (y, z) projection of the
receiving point if the sending panel is convex, and the reverse if the panel
is concave; (5) the moduli of the elliptic integrals are defined by

and (6) the amplitudes are related to the real anjle u by

§ 1/2 u

€
n

sin-1 (k} siny)
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A.2 Flat Panel with Linear Lateral Source Strength Variation

Flat panel, as used here, refers only to the lateral shape. The

panel may have longitudinal curvature and twist.

the outward normal direction from the sending panel, and will vary with x
along the panel. If we define the source strength as

S(Xl) =@y tely

\/’A -257

where e, and e} are functions of xj, the velocity potential is:
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Carrying out tne lateral integration from the left side, y,

side, yr, of a panel we get

to the rijht

Now we will differentiate with respect to x, y and z to obtain the
perturbation velocities. Wherever there is a local maximum of x. or xj,
the derivatives of the limit are as derived in Eq. (A-12) and again o<,
At a local maximum of x. or x, the integrand at yR minus the integrand at
yL is - eg w, so the derivative of limit terms are
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The positive z direction is
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When yp and y_ are not characteristics, they are not functions of x, y, or
2 sn there is no derivative of lateral 1imit contridution..

When yp or




Y__are on a qharacteristﬁt, the integrand is infinite, so in order to take
only the finite part we again neglect the derivative of lateral limit term.

Adding the x derivative of the integrand to the derivative of limit term
in Eq. (A-28),
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and similarly for the z derivative,
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Note that the #, integrand is identical to the #x integrand, except the
sign is changed and (x-x1)/g3 is replaced by (z-21)/s.

The only contribution to gy is the derivative of the integrand:
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Several pertinent facts regarding Eqs. (A-29), (A-30) and (A-31) are :
(1) the non-integral terms occur whenever the characteristic from the
receiving point intersects the sending panel at a right angle without wrapping
around or passing through any intervening surface; (2) the integral temms are
actually lateral summations over all of the panels within the bounds of the
characteristics; (3) the terms containing

e - N Al 5 3
N A ’ \ - , Ve

v F T must be set to zero when the y 1imit is a
characteristic; and (4) the positive z direction is defined by the outward
normal from the sending panel.
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1.0 INTROGUCTION +

This report describes Vought's Improved Wave Drag "Analysis Routine", and
an interactive computer "graphics routine" to view and edit the input data
deck to be used with the analysis routine. The analysis routine conputes
local velocities ana pressures on the surface of the configuration ana
integrates the pressures to obtain 1if., drag and pitching moment. At the
present stage of development, the analysis routine can handale a single body
with inlet or exhaust surfaces approximately perpendicular to the free stream,
and one pair of wing panels in a horizontal plane. The winy data can not be
input to or displayed by the graphics routine. The data deck describes the
external skin contour of an aircraft fuselage which can have longitudinal
steps, and may have a blunt nose and discontinuous body slupes or curvature.
The input data consists of three dimensional point definitions, together witn
sufficient information to divide the points into rows and boagy sections, to
identify lines of slope or curvature aiscontinuity, and to indicate any
“covered" areas where no boundary conditions are applied and the source
strengtnh is zero. No surface slope information is input by the user.

The program uses a three dimensional parametric cubic space spline to
define slopes along curves connecting input points both laterally and
longitudinally. These space curves then are used to define "Coon's patches"
(parametric cubic surface patches). The resulting surface definition is
guaranteed to be continuous in position as well as first and second derivative
except along lines that the user has identified as slope or curvature
discontinuities. The configuration is assumed to be left-right symmetric.

Local velocities and pressures are caiculatea to two to six points on each
panel, and the source strength varies linearly in both directions on the
panel. The source strength is continuous across panel boundaries, unless the
surface slope is discontinuous. Because of these techniques and the curved
panel definitions, the panels can be quite large in regions where the
velocities and source stengths are not expected to vary rapidly. For example,
in a region where the configuration is nearly axisymmetric, the panels coula
span thirty degrees or more laterally. In general, the input deck snhould
contain a much smaller number of points than would be required for an area
rule input deck describing the same configuration. A permanent restriction on




the longitudinal location of points within a row is that the slope (after
rotat1on) of the fore and aft panel boundaries must be less than V/M2 1 //
’1 + ez relative to the Y-Z plane, where MT is the Tlarger of true local

Mach nuiwoer and 1.7, and € is the pana! surface slope. The program will
automatically rotate the input geometry to an input value of angle of attack.

The graphics routine has been implemented on a CDC 6600, CDC Cyber 175,
and a PRIME mini-computer with a Tektronix 4014 using the Plot 10 software
package. However, the program was written to be easily transportable to any
type of graphics scope.

2.0 GEOMETRY CONCEPT

The fuselage external surface is defined by a set of three dimensional
point definitions. A right-handed X-Y-Z coordinate system is used: positive X
is aft, positive Y is the right side, and positive Z is up. Points are input
in rows, and the resulting set is connected both laterally and
longitudinally. While the analysis routine only requires lateral point
connectivity, the splining technique used to determine body slopes requires
the connectivity in two directions. Thus, each row within a section must have
the same number of points. Points are ordered from bottom to top, and the
rows are ordered from front to rear. Lateral symmetry is assumed and only the
positive Y half of the fuselage is defined.

The wing geometry is planar, and ray be defined by airfoil ordinates,

standard airfoil definitions or streamwise slope inputs.
3.0 INPUT FORMAT °

3.1 INPUT DATA DECK, EXCLUDING WING DATA

The data deck, except for the wing data if used, consists of only five
types of cards: title cards, point definition cards, an END card, an
Srefcard, and a Mach number card. A case begins with two title cards. The
first 40 columns of both cards are displayed on the scope. Following the
title cards, each card contains a single point definition, with five free
format data fields in the first 40 columns. Columns 41-80 can be used for
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comments. Data fields are separated by blanks or commas and may be numeric or
alphabetic. A field is interpreted as numeric if the first character is
numeric (0-9, plus, minus, or decimal) and is alphabetic if the first
character is A-Z. A decimal is assumed to the right of a numeric fiela if
none is present within the field.

The five data fields are the X, Y, and Z values for the point and two
point type fields. The coordinate fields may be numeric or may be defined by
the letters "X", “Y" and “Z", to indicate to use the previously definea
value. The point type serves three purposes. It indicates the division of
points into rows and sections, indicates slope or curvature discontinuities,
and indicates edges of covered panels. Point type is an alphabetic fiela.
The first character indicates whether the point initiates a section ("S"),
initiates a row ("R"), is a corner point ("C"), is a curvature aiscontinuity
("0"), is a covered area ("V"), or is a normal point (anything else). If the
first character is an "S", "R" or "C", the second and third characters can
indicate the direction of a slope discontinuity. An “X" inagicates a
longitudinal discontinuity and a "Y" indgicates a lateral aiscontinuity. Any
other characters except "D" are ignored. For example, "CY" indicates a point
at which the slope is aiscontinuous in the lateral direction, and "KX"
indicates the beginning of a row at which the longitudinal slope changes. “( "
is interpreted as “CY". If a point is both a corner point (slope B
discontinuity) and a curvature discontinuity, the slope discontinuity nust be
indicated first (e.g., CXDY or RYUX). The initial point of a data set is
automatically assigned as "S" by the program. If less than four fields are
supplied, the previous values are assumed for the missing X, Y or Z fields ana
"normal point" for the point type. Point definition input is terminated by
the letters "END" in the first data field of a carg. When wing gata are
input, they are inserted after the body data are completed and before the ENU
card (see Sction 3.2 below). Next is the Spef card with reference area and
reference chord and geometry rotation angle (degrees) in three data fields
(free format). There must be at least two non-zero values on this card. The
last input card contains analysis Mach numbers in free format, with a maximum
of 19 values. The minimum Mach number allowed is 1.1 The secona "Mach
number" may be used as an indicator - e.g., U for only wing-alone

calculations, -n to restart at row n.
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The covered area indicator (“V") appears in the fifth data field unless
the point type is noraml (blank, not a row or section initiator). If the
fourth field would otherwise be blank, the V goes in the fourth data field.
Any additional characters in the V fiela are ignored. In any lateral row of
points, there must be either zero or two V indicators. The V indicator has no
effect on the surface splining. When the V indicators are matched by V's on
an adjacent row at the longitudinally connecting pairs of points, the analysis
routine is triggered to bypass satisfying the no-flow-through boundary
condition on the intervening panel or panels and to set the source strength on
those panels to zero.

When the fuselage cross-section is a circle and seven evenly spaced
lateral points will match up with adjacent rows in the section, a simple
radius and Z location can be input insteaa of the seven X, Y, ¢ values, (l.e.,
one card can define a complete row.) In this case, the five data fielas are
X, radius, "AX", point type and Z center. Tnhe "AX" in the thira fiela may
have additional characters after the AX, which will be ignored. The point
type can only be S, SUX, R, RX or RUX. The Z center shifts the center of the
section vertically, if desired. The program computes the X, Y and L of the
seven evenly spaced (30 degrees) lateral points.

3.2 WING INPUT DATA DECK

The additional input data for the wing is inserted after the body data is
completed and before the END card. The wing data begins with WING in the
first free format data field of a card. At present, the wing data cannot be
included in the input to the graphics routine.

When wing data are input, the rotation angle of the Sref card muyst be
zero, and there must be only one real (z 1.1) Mach number. If only a
wing-alone calculation is desired, input two Mach numbers with the secona one
equal to zero. The reference area input to or calculated by the wing routine
will override the reference area on the Sref card gescribea bove. Also note
that the drag values printed with the body calculations do not include tne
wing drag and vice versa.

The wing surface is defined by airfoil sections. The input can consist of
an area rule deck or surface slopes which will be curve-fitted. Tne wing
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planform may be trapezoidal or it may have one leading edge break (two sweep
angles) and up to three trailing edge breaks (four trailing edge sweep
angles). The wing geometry is flattened into a Z=constant plane through the Z
value of the root chord. There is an upper limit of six spanwise curve fit
intervals, which means that with an area rule input, a maximum ot 7 span
stations can be input unless a discontinuity flag or duplicate span station
Tocations (Y, Z) are used.

The wing inputs are described in the following figures and definitions.
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WING DATA INPUTS

— IF A NEGATIVE NON-ZERO NUMBER (- A) IS INPUT IN COLS. 11-20 AND [F
MLESHPS = NTESWPS =1, THE PLANFORH IS DEFIMED BY AR. A .SHL(1). RAND
EITHER SEMSPN OR CROOT.

6F10.0

PF10.0

[P Y R p— 20 21=-=-=--30 Zl-mm=mm 40 41--—--- 50 Sl---=-- 60
DEL-Y Y-ALP-DISC SLOPE-MULT  DEL-SLOPE  SREF CROQOT
(LT.YLE(1). (RATIC TIMES (RADIANS] (REQUIRED (NEEDED
T..8SEMSPN] INPUT SLOPES IF ONLY IF
IF GT..0001) 1ENSREF<4) TRARULEO)
yree31 " NTECa) OMIT [F NTESWPS<4
--------------- 4l----- =<6 6F
SHT(2) 13770 Cgria? e vr:tg)/f’onLv TW THES

YTE(1) FOLLOWS IMMEDIATELYTASE. YLE(I) AND

AFTER SWT{NTESHPS) YTE(J) ARE THE IF
| RIGHT-HAND (OUf-| [1ARULE
i Nz 11--=--20 2l-==—= [ — 40 BCARD) BCUNDARY =0
SHLI1) SWLI2) YLE(L) YLE(2) LOKRESFONDING TO
[ (GT. 0. (GT. O, \4///”' KWL(T] OR SHT(J)
LT. 80.. LT. 80.) TAST VALUE MUST=SERMISPAN SF 10
Py DEGREES) — YLEf1)1=SEMISPAN IF NLESHPS=z1
. [—— 10 t1-=--- 20 21-<--- 30 21----- 20 41----- 50 Sl----- 60 =F10.0
[ XXT(1} YTE(2) XXT(2) YTE(2) XXT(3) USED
X OF RGOT IF HTESHPS>3. CONTINUE ON ANGTHER CARD) ONLY
CHORD T.E IF
A 10 11=--=-20 21=vm=n 31-mmm- 40 41-—--- S0 Sl----- 60 6F10].0 | IARULE
L4 XXL(1) YLE(°) XXL{2) YLE(2R) xpr;y <q
X OF ROGT CMIT IF NLESWPS=
CHORD L-E
o R p— 10 11-=m"v 20 Z1----- 3G 31----- 40 41----< 50 5l-=---- 60 6F10.0
i YEXLY YE((Z] . ETC- OMIT If NEXTRY=0
1 3 s 17 9§ 11 13 15 117 INTECER
.. LT .. TARULE
e ... NTESNPS
— . . . . . . {1 70 4)
. . NLESWPS(1 OR 2)
. MOOLIN(MUST BE 1)
NSREF(O TGO 6)
. . NEXTRY(O TO 6)
— . ITHICK(1 FOR THICKNESS.MUST BE 1)
N-SPAN-INTS(1 TO 6)
//ﬁ--4
L KING
by
B-6
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NOTE N’S ARE NEEDED ONLY IF AIRFQIL HAS CORNERS AND FNORD>S.
IF N'S ARE USEZ THE CHORDWISE CURVEFIT OF THE AIRFOIL
SLOPES WILL BE OISCONTINUOUS AT X/C,31.E.. THE VALUES
OF X/C, CEFINE THE CHOROWISE CURVEF!T BOUNDARRIES.

NOTE PROGRAM SHCVES LEFT AND RIGHT WING PANELS TOGETHER
IF THIS 1S NOT DESIRED BUT Y({1)>0. 2 RODITIONAL AIRFOILS
AT Y=0 AND Y=Y(1} WITH ORODINATES=0C MUST BE RDDEQ.
ALSC PROGRAM FLATTENS THE WING(aY=z /oYl . » 27 )

//ﬁ ————— 10 11----20 21——-—30 31----40 41--50 S1--B0 51-—70 71--80  8F10L0
z/¢, Z/C+ Z/C

LETC.
SEMI~ rnxcxwess;s OF THIZ AIRFGIL. IN EITHER PERCENT CHORD OR FRACTION REPEAT
QOF CHORO NAF
OMIT IF STRNDARD AIRFOIL OPTION (AFID} IS USED TIMES,
Z/C°S CONTINUE ON SUBSEGUENT CARROS IF FNORD>S 2sNAF,
S 10 11----20 21----30 31----40 41----30 S1----60 61---70 73 76 7B| NAFs12,
X, e Y F4 CHORG __» RFID XTMAX OISC FLG N, N, Nj| BUT &
CR,T/C 1 |0OR LESS
AFID 55R0044.FOR EXAMPLE ,/———” 7F10.0. CURVE-
| OR 53A.0R B4A. =EITHER % OR 313 FIT
OR BIC FRACTION INTER~
{ : ) vaLs
! {-m—- 10 11----20 21----20 31----40 41--50 31--60 61--70 71--80 &F10}l0
| X/C, X/C o X/C ETC.
. VALUES ©F Y¥C CAN BE EXPRC SEJ IN EITHER PERCENT CHORO GR FRACTIGN OF
| CHORS ., CONE S57 OF VALUES APPLIES 70 ALL AIRFOILS
CHMIT IF FNORG < 3.
J X/C'S CONTINUE ON SUBSEQUENT CARDS IF FNORD>8
: l==——— 10 1] emmem 20 21-=~~- 30 31----- 40 4F10.0
XORIG YORIG ZORIG FNORO -

IF FNORD< 3.. THE X/C CRARO IS
OMITTES. THE PROGRAM SETS
FNORD = 13. AND USES EVERY
10= CHORD.PLUS 57, AND 157

(//1-3 1----- 20 A3,7%, 410
103 NANE
6 (RCDED TO END OF TITLE)
OR 7
|
NOTE X.¢.Y.Z. AND CHORD VALUES MUST BE SUCH THAT THE
RESULTING (FLATTENED) WING HAS NO MORE THAN 2 L.E.
AND 4 T.E. SHEEP ANGLES.
TOLERANCE IS AITANA 1<.01745.8(TANA .)<.01745
L

AREA RULE INPUT(S54007)
DATA ON THIS PAGE IS USED ONLY IF IRRULE=1
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NOTE N's ARE NEEDED ONLY [F AIRFOIL HAS COKNERS AND NWAFOR>S.
IF N'S ARE USED THE CHOROWISE CURVEFIT CF THE AIRFOIL
SLOPES WILL BE OISCONTINUOUS AT XAF, 5 [.E., THE VALUES
OF xAF,  OEFINE THE CHOROWISE CURVEFIT BOUNDARIES.

NOTE PROGRAM SHOVES LEFT AND RIGHT WING PANELS TOGETHER
{F THIS IS NGT OESIREG BUT Y{1)>0. 2 ROCITIONAL AIRFOILS
GT =0 AND Y=Y(1] WITH ORCINATES=0 MUST BE ADOEQ.
ALSC PROGRAN FLATTENS THE WING(AY= /AYT , «32%_ . )

- m—

Simm-<7 G-=-14 15--21 22--28 29-_3% 356--42 43--45 50--56 57--63 64--70 | 10f7.0
 WRFCRC, WAF 30, WAF CRO, WAFORG, WSFORO, WAFORD WAFORD WAFORD, WAFORD, WAFORD,| REPEAT
[ SEMT-THICKNESSES 2F THIS ARIRFIIL NKAF
; . CMIT IF STANDARD AIRFCIL CPTICN (AFID) IS USED TIMES
WAFORZ'S CONTINUE CGN SUBSEQUENT CAKZS IF MWAFOR > 10
S1---7 B-=-14 15--2! 22--28 41----50 51----80 El1----70 73 76 79 ] 4F7.0.
¥ z CHORD RFIC XTMAX CISC.FLG N N_ N i 12X.
L€ OR R 3F10.0.
T/C 313
REPEAT THIS CARD NWAF TIMES
1-==7 B---14 15--21 20--26 23--35 36--42 43--49 50--56 57/--63 64--70 ]10F7.0
XAF XAF, XAF, XAF,  XAF, XAF, XAF, XAF, XAF, XAF
OMIT IF NWAFOR < 3
XAF’S CONTINUE ON SUBSEQUENT CAROS IF NWAFGR >10
INTEGER

16 2Q
NWAF  NWRFOR
L (2 T0 12) (3 T0 25)
2. BUT FOGR NHAF >7 TO BE ALLOWABLE.
EITHER D1SC. FLAG OR TWO RIRFOIL DEFS. AT THE
SAME Y.Z HUST SF USED SO THAY 6 OR LESS
SPANWISE CURVEFIT INTERVALS RESULT.

L NOTE X, .Y.Z. AND CHORD VALUES MUST BE SUCH THAT THE
RESULTING (FLATTENED) WING HRS NG MCRE THAN 2 L.E.
AND 4 T.E. SWEEP ANGLES-

TOLERANCE IS &{TAN/-41<.01745. 5 TAN-A_)<.01745

AREA RULE INPUT(TMX-947)
OATA ON THIS PAGE IS USED ONLY [F [ARULE=2

B-8




IF JCONIC >0, o IS INTERPULRTEU]RS R FUNCTION OF

*Fa
o~ V-TE, _, *+Fn., =Y)

INSTEAD OF X/C

, el 8
[e 8 o

“ + s S QMIT IF NSP
THIS CARD USED ONLY IF NPN>2(ADDITIONAL CARDS NOT SHOWN ARE USED IF N

----- S0 51
(X/C3, o,

- QMIT IF NSP
IS PART OF THE Y3 FIELO}

RLP HULT (x/Cy,
NOTE: 00 NOT PUT AN INTEGER IM COLUNMN 1(COL.!

6F10.0

BLP=] OR 2
PN>S |

RLP=1 OR 2

6F10.0Q

* onir 1
THIS CARD USED ONLY IF NPN>2(RDOITIONAL CAROS NOT SHOWN ARE USEC IF N

6F10.0

t NSPRLP=t
PN>S )

011

oMIT

i Sime==s 1
| Y2 o, Yo o,
| M2TE: Q0 NOT PUT AN INTEGER IN COLUMN 1(COL.1 IS PRRT OF

THE Y2 FIELD)

6F10.0
IF NSPALP=1

THIS CARC USED CNLY IF NPN>2(ROCITIONAL CRRCS NCT SHIKWN ARE USED

iF N

6F10.0

PN>S 1

-~

D 2----10 11
(b e Y ALP-MULT

T0 9)

INOTE o« IS IN RADIANS |

Y Bi----70

" . REFERT NKINT TIHES
!

.1.F9.0.
SFXO-O-XIU

PTION

1 3 4---1C 11----20
- . BLANK El
r . N\PHLP.\ RNQL'Y 1 72

8UT IF A NEBAT
8F READ

T 70 3.
f: ISNINPUT, ENTS WILL
vN~v;«

\-n.~
FORM
INT
TC 4)

e

X
!

IN 6F10.D
£ CURVEFIT BCUNDARRIES ARE

[VE

[FEFeat wevan

iNTS TIMES

1\

RY(SJ

AY(6)

SR R

21 s}
RY (3] AY(4)

AY(1!

20
Y(2)

[

6F10.0

OF THE | TH CURVEI-F]
FIRST COLUMN

IS THE LEFT-HAND OR INBCARO BOUNDOARY

INTERVAL: RN =& [N THE

CF AN AY FIELD (11.,21,.ETC.)
INOICATES A SPANWISE

SLOPE DISCONTINUITY-

RESULTS IN AN EXTRA Y AND SPECIAL

INTEGRATION

TRERTMENT
THIS CRRO OMITTED IF N-SPAN-INTS=1

X.Y.Z COOROINATES OF ROOT CHORD LERDING EODGE

ALL DARTA ON THIS PAGE OMITTED IF IARULE >0

10.0

B-9




Notation
Svrbol
20202

[§ . Taem

l"Jp =-10TS

NEXTRY

NSREF

MCDLIN

Copi
permit to.

AR

SLUNNL PETINITICHS

Definition Units
Nusber of shunwise curve-fit intervals vone
Thickness option; ITHICK = 0 for camber, None

twist and rngle of attaclk cffects,
ITHICKX = 1 for thickness effects

Numbaer of citra span stations (in addition Yone
to those detemmined by nultiples of DEL-Y)
for aero calculations

piion; NGDIF = 0 tetal plan lone
‘ 7 NORLD = ioput value
ol STETF il sed in snre units as plan~

WIRIT = 2 iasut valua of
S2EF i in fed

i i WSEIF = 3 {input
$ a ratio, i.e., reference

inches (o winstever uni
this 1s useful for thickness

d ¢cas exposed panels have been

shovad tonnto oz for reflection plane coffect;

NSREF = 5 vrefercace area defined by outer-

most wing nancl extended in to the centerlire:

NSRET = 6 rzafcrence area defined by innermrost

wing panel extcnded out to the tip station.
Yonlirearitvy cption; pressure coefficients None

calculated frem the exact Lquacion using
calculate’ strearwise perrubation velocitv
and assumed sranvise portubation velecitv.

In additien, wien ITIUICU=1, local 3 (fore-
crne shane) is radified te account for lecal
perturbeg velocity and the {low tancency con-
ditien uses iocnl welocitry rather than free-
c1ow in denoninacter (availnsble

sgroam velocrow

niv for ohid effecra, TTHICK = 1).

VOVLIY =l sonlinerr selution; MODLIN = 2
cives noriiacar aolintion ~lus linearized

salutisn roh =odirded tonsonev cendition onlvy
(RN R K

LU= 4 e aniv a4 printout of the

o S oo i addition o the usual
AR e VAR D
]
1418 B_]O
ATal 1!

—




IAnULE

YEX(I)

Letinicion

N of sveep anples uved to dafine
lerding edge of planform

Nuvber of sweep annles used to define
truiling edge of planforz

Grerrtrv and slepa input ontien. Tf TARULE
> 0 (allowed only if ITHICK >0, JSTM = 0,
JTVIST <0, and HONIC = 0), the wing defini-
tion portion of an area rule ianut deck
provides both the wing geomctry and airioil
(slope) inputs. If IARULE = 1, Vousht format
is used and if TARULE = 2, NASA (T X-947)
foruct is used. LI IARULE < 0, slope inputs
are required., I IARULIZ < 0, geoumetry is
defined by (Y, X) coordinates. If IARULE =
0, geemerry is delfined by leadinz and trailing
edye st eep angles

Extra span staticns for aero calculatrions

None

Jlone

L




Svrhol

¥EL(D

YLE(D)

XXT(!

YTE(S)

SWL (1)

SWIT(D

DEL-Y

X cncrdicate of rhe leading edge at YLE (1)

Span station defining leadinp edge
breal: point.

X coordinate of the trailing edre at YTE(J)

Span station defiping trailing edge break
roint

dze sweap-back angle,
WL{n) is the sweep inboard of TLE(n).

Sweep dafining trailine edpe of planform
SWT(n) is sweep int of YTE(n).

Increeent in vy tetw
station; if lefr blanh

‘ecn calculated span
r made less than

Lenslint, T ¢ added o iajnuz "
Tl 2+ .
Wad el L l0iTR.

Root Chord.
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Units

*

*

*

*
Degrees
Degrees
*

*

Neone
Radians
*




AY

Ao

NATl

ALT--

X/C

sl

o]
v e
Ty 1-
[
NN

JCOXIC

When an optlc:

is u

Inds

-

ol
R

RS-

-
-

v
S

-

Devinition

Spenwice curve fit boundaries; value is
equal to the v value of the left boundary
of the respective span interval,

Twist case onlv (JIWIST ¥ N _and

<o

N-SPAN-INTS = 1), cv= cylIWIST,

Number of chordwise curve fit intervals
in a given spanwise interval

Nusber of span statlions for & inputs

Coefficients of bcundary between the
first and second cnordwise ince:ivals
where X = E1 + F1 (y)

Coeificients of boundarv betveen the second
and third chorqdvise intervals where
o= L2+ T2 ()

Cocificionts of bLoundary betwnen the
third ond feurth chordwise invervals
whare N = E3 + T3 ()

The thr2z span stations at which <¢ data
is ~ivien Jar toe poved ar curve-fit

<
5 - a1l § o~ ~ el
indervad celng conslder

Facter bv which input oo 's feor this Y and
this chevwdwise interval onlv will be multinlicd.

g
Wot used Lf input value = O
Fraction of local chord

Local annle of attack (for ITHICK = 1,
XKoo= -d(t/2)/d2).
Curvefit cption; if 70, slopes will be fitted

and intcrpolated spanwise alonz constant fractions
of curve-fit panel chord iastead of wing cherd,
This opticn is chocen separately for each curve-~
fit inzewval,

LI
tonmy

(SRS U

Units

Radians/
(*) JIWIST

None

None

llone

None

None

Radians




4.0 INTERACTIVE PROGRAM CONTROL (GRAPHICS ROUTINE)

4.1 CUMMAND SUMMARY

For reasons of initial program portability, all program interaction is
nandled tnrough the keyboard. All commands are initiated by typing at least
tne tirst two characters of the command name. The routine will respond with a
prompter describing the additional information (if any) required to compiete
the command. Commands fall into four categories:

) uisplay options

) Editing options
) Editing aids
)

Output options

Tne 2isplay options give the user control over the appearance of tne
ozl onvsplay.  Uptions are availaole to view the model trom any angle, to
P Lne Sodle and view center of the display, to clip the display tu a
s Itensional view box, to display either or poth sides of the model, anu

os7othe soreen and re-display the nogel.

1t 1 e2iting options allow tne user to change tne title, move one or nore

1nTs, dngnge tne corner codes, or to reject the effect ot the previous

miiting a10s allow the user to mark a number of points on the display with
*setr p3Int numbers, or to display the coordinates and corner codes for one or

Tere points.,

sutuut options include the ability to print or punch the current data set,
_rote oplot the dispiay. The “plot" option currently just writes a vector file
anin Cdn e processed by an external routine to route the inforwation to an
sworopriate plotting device. Two examples of the scope display are shown in

Prsures boana 2,

G-14
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4.2 DISPLAY COMMANDS

For display purposes, the complete model definition is stored as a single
vector 1ist, in model coordinates. When the program calls for the aisplay of
the model, each vector is processed by the following transformations:

1)  Translate with respect to a view center

2) Rotate through yaw, pitch and roll angles

3) Scale to a specified unit sphere

4) (lip to a specified three dimensional viewport

The remaining visible portion of each vector (if any) is displayed with
the X coordinate mapping onto the horizontal screen dimension ang the Z
coordinate mapping onto the screen vertical dimension.

The display options allow the user to specify the parameters used in the
viewing transformations as well as to control re-displaying the wodel ana to
select one or both sides of the model for display.

Since the user may wish to change several ot the display parawveters before
re-displaying the picture, an optional display suppression flay may ve input
following the last mentioned parameter. When any non-biank value is supplied
for this flag, the picture will not be re-displayed until a further coimand
specifically requires it.

4.2.1 Transiate

The program responds with “ENTER VIEW CENTER X, Y, Z". The user shoula
type the model coordinates of the point that will be translated to the center
of the screen.

4,2.2 Rotate

The program responds with "ENTEK YAW, PITCH, RULL". The user shoula type
the values in degrees. The (0, U, 0) orientation is the left profile.
Positive yaw is nose left. Positive pitch is nose up. Positive roll is right
side up.

(dp]




A convenient way to visualize a desired rotation is to image that the
viewer is initially located to the left side. First move around toward the
nose by the desired yaw angle. Then move the imaginary viewpoint through a
desired elevation angle. The pitch angle will be the negative of the
elevation angle and roll will be zero. The model can be viewed from any angle
with aonly two angles specified. Three rotation angles are necessary only to
control the orientation of the resulting view.

4.2.3 Scale

The program responds with "ENTER VIEWING RADIUS". The user enters a
radius, in model coordinates, that will be scaled to fit within a 12-incn
viewing area.

4.2.4 Clip

The program responds with "ENTER XMIN, YMIN, ZMIN, XMAX, YMAX, MAX". The
values are in display coordinates (screen inches). (U, U, 0) is the screen
center. The following may aid in specifying tne values.

XMIN - Left side

YMIN - "Near" side. Negative Y is toward the viewer
ZMIN - Bottom

XMAX - Right side

YMAX - "Back" side. Positive Y is benind tne screen
IZMAX - top

4,2.5 Side

This controls whether the program displays the left side (-Y), the right
side (+Y), or both sides of the model. The program responds “LtFT, RIGHT UK
BOTH",
4,2.6 Paint

This causes the program to clear the screen ang re-aisplay the picture.

This may be necessary because of an accumulation of command or output data on
a Tektronix scope.




4.3 EDITING AIDS

The commands are available to aid the user in identifying and Tocating
points on the display.

4.3.1 Mark

This cormand causes the program to show the point number of one or more
points on the display at the point location. This enables the user to
identify points in the configuration. The program responds with "ENTER POINT
RANGE". The user types in the first and last numbers to be marked. Once a
range of points has been marked, the command stays in effect through changes
of display until changed. To turn off the point marking, enter null print
range (0, 0 or only a space before the end-of-line).

4.3.2 Locate
The program responds "EHTER POINT RANGE". After the user types in the
first and last point of interest, the program will display the existing X, Y

and Z coordinates and the corner code for the specified points.

4.4 EDITING COMMANDS

Four commands are available that actually change the data set. These
allow the user to move points, change the corner codes, reject a previous
change, or change the title.

4.4.1 love Points

The program responds "ENTER POINT RANGE, X, Y Z". The user enters the
first and last point to be moved (which may coincide) and the new point
coordinates for the first point of the range. A1l the points will then be
noved by the same increment as the first point. This allows an entire row or

group of rows to be moved as easily as a single point.




4.4.2 Change Corners

The program responds "ENTER POINT RANGE AND NEW CORNER CODE". The user
enters the first and last point of interest and the new ten character point
type, which can include the regular point type field and/or the "V" indicator
for covered panels. Notice that the routine will not redefine rows or
sections with this command, only the slope discontinuity indicators are
changed.

4.4.3 Reject

This command retracts the effects of the previous MOVE or CHANGE cormand.
No additional parameters are entered.

4.4.4 Title

The routine responds "TYPE IN FIRST LINE OF NEW TITLE" and then "TYPE IN
SECOND LINE OF NEW TITLE". Forty characters may be entered in each line,

4.5 QUTPUT COMHANDS

Three output options are available to allow the user to print or punch the
current data set, or to write a plot file,

4.5.1 Print

No other parameters are entered. The printed output represents the
current title, point and corner codes.

4.5.2 Punch

No other parameters are entered. The punch deck may be used for direct
input either to the graphics/editing routine or to the analysis routine later,




4.5.3 Plot

No other parameters are entered. The routine writes a binary file
consisting of the current vector set and view transformation parameters for
use by an external batch routine to direct the required plot data to the
appropriate plotting equipment. If the vector set has not changed since the
previous plot was requested, only the new view parameters are written.

5.0 SAMPLE CASE

Printout for a sample case is shown in Figure 3. Included in the printout
is a side by side literal and interpreted print back of the fuselage input
data. If a wing is input, the print back is the interpreted type only. Next
is the panel geometry data resulting from the three dimensional splining.
Finally, the computed local pressures and velocities and the integrated forces
are printed.

6.0 SUGGESTIUNS FUR INPUT PREPAKATIUN

The most important recommendation is to always use the grapnics routine to
check and edit the body geometry. This step nearly always uncovers one or
more errors in the input data or areas where the curve fit is not quite what
was desired.

In general, one should use the minimum number of points which adeguately
describe the geometry. The only exception is in areas where it is apparent
that flow conditions will be varying rapidly due to asymmetry or local slope
variations. In areas where flow conditions are nearly constant, a panel can
span 30, 45, or even 90 degrees laterally. The panels should not span more
than 90 degrees because that could cause inaccuracy in the characteristic
tracing.

The body points are input from bottom to top, starting with the front
row. Although the input points are sequenced from bottom to top, the panels
are numbered from top to bottom and the results are printed in top to bottom
order. Each lateral spline fit extends from the bottom point to the first
lateral corner (CY) or the top point, and the next one to the next CY or the




top point, whichever occurs first. Each longitudinal Tine is splined from the
first row in the section to the next longitudinal corner (CX or RX) or to the
last row in the section, etc. A curvature discontinuity (DX or DY) does not
interrupt the fit; it keeps the slope continuous but substitutes a constant
curvature condition in an adjacent segment instead of the equal curvature
condition across the point. Within each spline fit of more than two points
there must be at least one point at which the curvature is continuous.

The discontinuous curvature (DX or DY) option should be used when one
class of curve joins another with the slope continuous. An example is a
tangent ogive cylinder body shape. Curvature reversals also can occur at
Tccations where it is necessary to keep the slope continuous.

The covered panel (V) option should be used in most cases at the wing-body
intersection, particularly if a portion of the wing stub is defined as part of
the body, or if lateral corners with -
panel.

600 are adjacent to the covered

- .

A new section is required to change the number of input points per row or
to introduce an inlet-type step. At each new section, the spline fit starts
anew, and the slopes and ordinates may be different from those at the end of
the previous section.

Hormally, the slope of the lateral spline fit is + 90° at the first and
Tast points in a row. If this is not desired, these points must have a CY
point type. Also, the first and Tast points in each lateral row must lie in
the plane of symmetry ( ¥<10°6x body length). Al11 longitudinal lines
defining lateral boundaries of panels must have positive length ( & X > 2 x
10-6x body length).

The fore and aft panel boundaries (Tateral input rows) have a maximun
slope limitation because of the marching scheme used to solve the non-linear
equations. The marching scheme requires that succeeding rows not have any
effect on the current row. Thus, the characteristics from the back of a row
must not trace out of the back of the row. This means that the lateral slope
must always be Tess than /M, 21/./1+ <% where My is the true
local Mach nurber with a minimun value of 1.1 and ¢ is the strearwise surface
slope. To meet this requirerent, all lateral Tines should have a slope less
than 0.458/ /1 + <2,
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When wing data are input, the airfoils can be defined by either of two

formats of area rule type input (airfoil ordinates) or by streamwise surface
slope input. When surface slope input is used, care must be taken with the
sign of the slope. The input is -1//2 dt/dx, so the sign is negative when the
thickness is increasing, and positive when the thickness is decreasing.

A restart capability is available to prevent having to duplicate long
computations in cases such as encountering the CP time limit, a program bomb,
or to evaluate effects of goemetry changes near the aft end of the body. To
use this capability, the file TAPE8 must be saved from the initial
calculation. Then the calculations can be restarted at the beginning of any
row for which all preceding row calculations were completed. €E.g., if the
initial calculation was completed through row 6, the case can be restarted at
any row from 2 through 7. The Mach number must be the same and the geouetry
through the preceeding row must be unchanged. The program is signaled to use
the restart capability by reading the input iMach numbers anug tinainy thne
second "Mach number" is s -2. The calculation starts at the 'n'th row if the
second "Mach number" is (-n). The old TAPL8 file must be attached to the job
with the local file name of TAPES.

7.0 ARRAY LIMITS

a) NPANL ¢ 200, where NPANL = actual number of panels + 1 extra (dutmy) per
row.

b) NROWS £ 20, where NROWS = numbers of rows of panels (is less than number
of input stations by the number of sections).

c) NPL $ 19, where NPL is the number of actual panels in any row.

d) NYDISC ¢ 33-NPL, where NYDISC is the number of Y, or lateral,
discontinuities in the row.

e) MLDSC £ 80, where MLDSC is the total number of Y (lateral) slope

discontinuities.
f) NSECS € b, where NSECS is the number of sections.
g) Total number of input points ¢ 400.
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8.0 OUTPUT DATA FROM ANALYSIS ROUTINE

The output data consists of the following categories in order: 1
a. Date and time of run
b. Title cards
c. Body geometry input - literal and interpreted, side by side
d. Wing input data-interpreted-if used.
e. Reference area card, Mach numbers - interpreted
f. Summary of sections, rows, points
g. Wing-alone results - if applicable ‘
h. Panel geoemetry
i. Body results
j. Results for wing with effect of body - if applicable
Only items (g) through (j) above will be discussed, because {a) through (f)
are self-explanatory.

The wing alone results include chordwise data at each span station and the
integrated drag coefficient of the wing based on the specified reference i
area. The span stations (y's) are relative to the y of the root chord, RUTY. )
At every 5% of the local chord, values of upper surface ordinate (Z/C) as a
fraction of Tocal chord, local slope (ALP= -dz/dx) and pressure coefficient
(CPU) are printed. The CDC value is the local section drag coefficient times

the local chord, divided by the average chord of the exposed wing.

The panel geometry print gives geometric data on each panel at the four
corners and at the average x on each side of the panel. The RDD is a

curvature measure; i.e., the second derivative of radius with respect to X.
The ordinates X, Y and Z, the derivatives YD (dy/dx) and ZD (dz/dx), the
streamwise SLOPE and the outward surface normal THETA are printed at each
point from the parametric cubic surface patch definitons. The analysis
routine uses a circular arc approximation at each X to the surface patch
defined shape. The T1/RADIUS and ARC-THETA are the reciprocal of the circular .
arc radius and the g, respectively, associated with the circular arc
approximation., Theta is the direction of the projection into an X = constant
plane of the local surface outward normal, and 2= 0 is parallel to the
positive y axis.

g omg
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The body results print the calculated pressures and flow conditions at
each control point. Control point calculations are made at the beginning
(front) of the first row and for other rows when required due to
discontinuities. Control point calculations are always made at the middle and
back of each row. X, Y and Z are the ordinates of the control point, Control
points are located 20 percent of the panel width away from the side edges,
except at the leading edge of finite width panels where they are located 10
percent of the panel width away from the edge. THETA is the lateral outward
normal direction as defined previously; it is not a meridian angle except in
very simple cases. EPS is the local streamwise slope. CP is the pressure
coefficient. M-LOCL is the true local Mach number. PHIX, PHIL AND PHIN are
the perturbation velocity ratios to freesteam velocity in the X, lateral and
normal directions. PHIL is positive in the downward or increasing panel
number direction, V/VZ is the ratio of the total perturbed Tlocal velocity to
freastream vejocity. S53-EDGT is the source strenqgth at the adjacent lateral
edge of the panel; this is the only printed value which does not correspond to
the control point Tocation. BETA-C is the correlated3 . PHIY and PHIZ are
the perturbation velocity components in the Y and Z directions. Two
additional numbers may be printed at the right side of the page without
labels. The first one, which will include a decimal, is a total pressure
ratio which arose from a blunt nose or corner solution and is attenuated as
the solution marches aft. The second number is an integer and tells how many
iterations were computed for the point or group of points. The maximuw number
of iterations allowed is five. When calculations for a row are conpleted, the
contributions of each panel (one side only) to drag, 1ift and pitching moment
are printed (DEL-CD, DEL-CL, DEL-CM). Then the total drag, 1ift and moment
coefficients for both sides of the configuration and summed over all completed
rows are printed as CD, CL and CM.

The results for wing with the effect of the body are in the same format as
the wing-alone results described previously, and are printed after all body
results are listed.

9.0 RESOURCE REQUIREMENTS

The central processor time per lach number presently varies from 1 to 15
seconds per panel on a CDC 6600. If the input geometry is axisymmetric, the
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routine only calculates one solution per strearmwise location and assigns the
resulting pressures to all lateral panel points, thus significantly reducing
the computations required, Approximately 200,0005 words of memory are
required for the analysis routine with segmentation.
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FIGURE 1 SCOPE DISPLAY
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